Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

  • Volume 12,Issue 2,2024 Table of Contents
    Select All
    Display Type: |
    • >Special Section on Battery Energy Storage Systems for Net-zero Power Systems and Markets
    • Guest Editorial: Special Section on Battery Energy Storage Systems for Net-zero Power Systems and Markets

      2024, 12(2):321-322. DOI: 10.35833/MPCE.2024.000243

      Abstract (711) HTML (14) PDF 268.51 K (152) Comment (0) Favorites

      Abstract:

    • Storing Freshwater Versus Storing Electricity in Power Systems with High Freshwater Electric Demand

      2024, 12(2):323-333. DOI: 10.35833/MPCE.2023.000306

      Abstract (666) HTML (32) PDF 2.79 M (154) Comment (0) Favorites

      Abstract:We consider a power system whose electric demand pertaining to freshwater production is high (high freshwater electric demand), as in the Middle East, and investigate the tradeoff of storing freshwater in tanks versus storing electricity in batteries at the day-ahead operation stage. Both storing freshwater and storing electricity increase the actual electric demand at valley hours and decrease it at peak hours, which is generally beneficial in term of cost and reliability. But, to what extent? We analyze this question considering three power systems with different generation-mix configurations, i.e., a thermal-dominated mix, a renewable-dominated one, and a fully renewable one. These generation-mix configurations are inspired by how power systems may evolve in different countries in the Middle East. Renewable production uncertainty is compactly modeled using chance constraints. We draw conclusions on how both storage facilities (freshwater and electricity) complement each other to render an optimal operation of the power system.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
    • Co-optimization of Behind-the-meter and Front-of-meter Value Streams in Community Batteries

      2024, 12(2):334-345. DOI: 10.35833/MPCE.2023.000746

      Abstract (630) HTML (17) PDF 2.33 M (117) Comment (0) Favorites

      Abstract:Community batteries (CBs) are emerging to support and even enable energy communities and generally help consumers, especially space-constrained ones, to access potential techno-economic benefits from storage and support local grid decarbonization. However, the economic viability of CB projects is often uncertain. In this regard, typical feasibility studies assess CB value for behind-the-meter (BTM) operation or wholesale market participation, i.e., front-of-meter (FOM). This work proposes a novel techno-economic operational framework that allows systematic assessment of the different options and introduces a two-meter architecture that co-optimizes both BTM and FOM benefits. A real CB project application in Australia is used to demonstrate the significant two-meter co-optimization opportunities that could enhance the business case of CB and energy communities by multi-service provision and value stacking.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
    • Low-carbon Dispatching for Virtual Power Plant with Aggregated Distributed Energy Storage Considering Spatiotemporal Distribution of Cleanness Value

      2024, 12(2):346-358. DOI: 10.35833/MPCE.2023.000762

      Abstract (601) HTML (13) PDF 3.23 M (128) Comment (0) Favorites

      Abstract:The scale of distributed energy resources is increasing, but imperfect business models and value transmission mechanisms lead to low utilization ratio and poor responsiveness. To address this issue, the concept of cleanness value of distributed energy storage (DES) is proposed, and the spatiotemporal distribution mechanism is discussed from the perspectives of electrical energy and cleanness. Based on this, an evaluation system for the environmental benefits of DES is constructed to balance the interests between the aggregator and the power system operator. Then, an optimal low-carbon dispatching for a virtual power plant (VPP) with aggregated DES is constructed, wherein energy value and cleanness value are both considered. To achieve the goal, a green attribute labeling method is used to establish a correlation constraint between the nodal carbon potential of the distribution network (DN) and DES behavior, but as a cost, it brings multiple nonlinear relationships. Subsequently, a solution method based on the convex envelope (CE) linear reconstruction method is proposed for the multivariate nonlinear programming problem, thereby improving solution efficiency and feasibility. Finally, the simulation verification based on the IEEE 33-bus DN is conducted. The simulation results show that the multidimensional value recognition of DES motivates the willingness of resource users to respond. Meanwhile, resolving the impact of DES on the nodal carbon potential can effectively alleviate overcompensation of the cleanness value.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
    • Optimal Operation with Dynamic Partitioning Strategy for Centralized Shared Energy Storage Station with Integration of Large-scale Renewable Energy

      2024, 12(2):359-370. DOI: 10.35833/MPCE.2023.000345

      Abstract (562) HTML (13) PDF 2.13 M (125) Comment (0) Favorites

      Abstract:As renewable energy continues to be integrated into the grid, energy storage has become a vital technique supporting power system development. To effectively promote the efficiency and economics of energy storage, centralized shared energy storage (SES) station with multiple energy storage batteries is developed to enable energy trading among a group of entities. In this paper, we propose the optimal operation with dynamic partitioning strategy for the centralized SES station, considering the day-ahead demands of large-scale renewable energy power plants. We implement a multi-entity cooperative optimization operation model based on Nash bargaining theory. This model is decomposed into two subproblems: the operation profit maximization problem with energy trading and the leasing payment bargaining problem. The distributed alternating direction multiplier method (ADMM) is employed to address the subproblems separately. Simulations reveal that the optimal operation with a dynamic partitioning strategy improves the tracking of planned output of renewable energy entities, enhances the actual utilization rate of energy storage, and increases the profits of each participating entity. The results confirm the practicality and effectiveness of the strategy.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
    • Real-time Energy Management for Net-zero Power Systems Based on Shared Energy Storage

      2024, 12(2):371-380. DOI: 10.35833/MPCE.2023.000535

      Abstract (610) HTML (10) PDF 2.30 M (115) Comment (0) Favorites

      Abstract:Battery energy storage systems (BESSs) serve a crucial role in balancing energy fluctuations and reducing carbon emissions in net-zero power systems. However, the efficiency and cost performance have remained significant challenges which hinders the widespread adoption and development of BESSs. To address these challenges, this paper proposes a real-time energy management scheme that considers the involvement of prosumers to support net-zero power systems. The scheme is based on two shared energy storage models, referred to as energy storage sale model and power line lease model. The energy storage sale model balances real-time power deviations by energy interaction with the goal of minimizing system costs while generating revenue for shared energy storage providers (ESPs). Additionally, power line lease model supports peer-to-peer (P2P) power trading among prosumers through the power lines laid by ESPs to connect each prosumer. This model allows ESP to earn profits from the use of power lines while balancing power deviations and better consuming renewable energy. Experimental results validate the effectiveness of the proposed scheme, ensuring stable power supply for net-zero power systems and providing benefits for both the ESP and prosumers.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
    • Improved Energy Management Strategy for Prosumer Buildings with Renewable Energy Sources and Battery Energy Storage Systems

      2024, 12(2):381-392. DOI: 10.35833/MPCE.2023.000761

      Abstract (918) HTML (16) PDF 4.42 M (122) Comment (0) Favorites

      Abstract:The concept of utilizing microgrids (MGs) to convert buildings into prosumers is gaining massive popularity because of its economic and environmental benefits. These prosumer buildings consist of renewable energy sources and usually install battery energy storage systems (BESSs) to deal with the uncertain nature of renewable energy sources. However, because of the high capital investment of BESS and the limitation of available energy, there is a need for an effective energy management strategy for prosumer buildings that maximizes the profit of building owner and increases the operating life span of BESS. In this regard, this paper proposes an improved energy management strategy (IEMS) for the prosumer building to minimize the operating cost of MG and degradation factor of BESS. Moreover, to estimate the practical operating life span of BESS, this paper utilizes a non-linear battery degradation model. In addition, a flexible load shifting (FLS) scheme is also developed and integrated into the proposed strategy to further improve its performance. The proposed strategy is tested for the real-time annual data of a grid-tied solar photovoltaic (PV) and BESS-powered AC-DC hybrid MG installed at a commercial building. Moreover, the scenario reduction technique is used to handle the uncertainty associated with generation and load demand. To validate the performance of the proposed strategy, the results of IEMS are compared with the well-established energy management strategies. The simulation results verify that the proposed strategy substantially increases the profit of the building owner and operating life span of BESS. Moreover, FLS enhances the performance of IEMS by further improving the financial profit of MG owner and the life span of BESS, thus making the operation of prosumer building more economical and efficient.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
    • Distributed Stochastic Scheduling of Massive Backup Batteries in Cellular Networks for Operational Reserve and Frequency Support Ancillary Services

      2024, 12(2):393-404. DOI: 10.35833/MPCE.2023.000414

      Abstract (400) HTML (11) PDF 3.60 M (106) Comment (0) Favorites

      Abstract:Base station (BS) backup batteries (BSBBs), with their dispatchable capacity, are potential demand-side resources for future power systems. To enhance the power supply reliability and post-contingency frequency security of power systems, we propose a two-stage stochastic unit commitment (UC) model incorporating operational reserve and post-contingency frequency support provisions from massive BSBBs in cellular networks, in which the minimum backup energy demand is considered to ensure BS power supply reliability. The energy, operational reserve, and frequency support ancillary services are co-optimized to handle the power balance and post-contingency frequency security in both forecasted and stochastic variable renewable energy (VRE) scenarios. Furthermore, we propose a dedicated and scalable distributed optimization framework to enable autonomous optimizations for both dispatching center (DC) and BSBBs. The BS model parameters are stored and processed locally, while only the values of BS decision variables are required to upload to DC under the proposed distributed optimization framework, which safeguards BS privacy effectively. Case studies on a modified IEEE 14-bus system demonstrate the effectiveness of the proposed method in promoting VRE accommodation, ensuring post-contingency frequency security, enhancing operational economics, and fully utilizing BSBBs energy and power capacity. Besides, the proposed distributed optimization framework has been validated to converge to a feasible solution with near-optimal performance within limited iterations. Additionally, numerical results on the Guangdong 500 kV provincial power system in China verify the scalability and practicality of the proposed distributed optimization framework.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
    • Multi-scale Fusion Model Based on Gated Recurrent Unit for Enhancing Prediction Accuracy of State-of-charge in Battery Energy Storage Systems

      2024, 12(2):405-414. DOI: 10.35833/MPCE.2023.000726

      Abstract (624) HTML (17) PDF 3.04 M (105) Comment (0) Favorites

      Abstract:Accurate prediction of the state-of-charge (SOC) of battery energy storage system (BESS) is critical for its safety and lifespan in electric vehicles. To overcome the imbalance of existing methods between multi-scale feature fusion and global feature extraction, this paper introduces a novel multi-scale fusion (MSF) model based on gated recurrent unit (GRU), which is specifically designed for complex multi-step SOC prediction in practical BESSs. Pearson correlation analysis is first employed to identify SOC-related parameters. These parameters are then input into a multi-layer GRU for point-wise feature extraction. Concurrently, the parameters undergo patching before entering a dual-stage multi-layer GRU, thus enabling the model to capture nuanced information across varying time intervals. Ultimately, by means of adaptive weight fusion and a fully connected network, multi-step SOC predictions are rendered. Following extensive validation over multiple days, it is illustrated that the proposed model achieves an absolute error of less than 1.5% in real-time SOC prediction.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
    • Optimal Offering of Energy Storage in UK Day-ahead Energy and Frequency Response Markets

      2024, 12(2):415-426. DOI: 10.35833/MPCE.2023.000737

      Abstract (669) HTML (11) PDF 595.82 K (96) Comment (0) Favorites

      Abstract:The offering strategy of energy storage in energy and frequency response (FR) markets needs to account for country-specific market regulations around FR products as well as FR utilization factors, which are highly uncertain. To this end, a novel optimal offering model is proposed for stand-alone price-taking storage participants, which accounts for recent FR market design developments in the UK, namely the trade of FR products in time blocks, and the mutual exclusivity among the multiple FR products. The model consists of a day-ahead stage, devising optimal offers under uncertainty, and a real-time stage, representing the storage operation after uncertainty is materialized. Furthermore, a concrete methodological framework is developed for comparing different approaches around the anticipation of uncertain FR utilization factors (deterministic one based on expected values, deterministic one based on worst-case values, stochastic one, and robust one), by providing four alternative formulations for the real-time stage of the proposed offering model, and carrying out an out-of-sample validation of the four model instances. Finally, case studies employing real data from UK energy and FR markets compare these four instances against achieved profits, FR delivery violations, and computational scalability.

    • Optimal Bidding Strategy for PV and BESSs in Joint Energy and Frequency Regulation Markets Considering Carbon Reduction Benefits

      2024, 12(2):427-439. DOI: 10.35833/MPCE.2023.000707

      Abstract (428) HTML (12) PDF 3.46 M (98) Comment (0) Favorites

      Abstract:Photovoltaic (PV) and battery energy storage systems (BESSs) are key components in the energy market and crucial contributors to carbon emission reduction targets. These systems can not only provide energy but can also generate considerable revenue by providing frequency regulation services and participating in carbon trading. This study proposes a bidding strategy for PV and BESSs operating in joint energy and frequency regulation markets, with a specific focus on carbon reduction benefits. A two-stage bidding framework that optimizes the profit of PV and BESSs is presented. In the first stage, the day-ahead energy market takes into account potential real-time forecast deviations. In the second stage, the real-time balancing market uses a rolling optimization method to account for multiple uncertainties. Notably, a real-time frequency regulation control method is proposed for the participation of PV and BESSs in automatic generation control (AGC). This is particularly relevant given the uncertainty of grid frequency fluctuations in the optimization model of the real-time balancing market. This control method dynamically assigns the frequency regulation amount undertaken by the PV and BESSs according to the control interval in which the area control error (ACE) occurs. The case study results demonstrate that the proposed bidding strategy not only enables the PV and BESSs to effectively participate in the grid frequency regulation response but also yields considerable carbon emission reduction benefits and effectively improves the system operation economy.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
    • Distributed Source-Load-Storage Cooperative Low-carbon Scheduling Strategy Considering Vehicle-to-grid Aggregators

      2024, 12(2):440-453. DOI: 10.35833/MPCE.2023.000742

      Abstract (618) HTML (23) PDF 3.53 M (98) Comment (0) Favorites

      Abstract:The vehicle-to-grid (V2G) technology enables the bidirectional power flow between electric vehicle (EV) batteries and the power grid, making EV-based mobile energy storage an appealing supplement to stationary energy storage systems. However, the stochastic and volatile charging behaviors pose a challenge for EV fleets to engage directly in multi-agent cooperation. To unlock the scheduling potential of EVs, this paper proposes a source storage cooperative low-carbon scheduling strategy considering V2G aggregators. The uncertainty of EV charging patterns is managed through a rolling-horizon control framework, where the scheduling and control horizons are adaptively adjusted according to the availability periods of EVs. Moreover, a Minkowski-sum based aggregation method is employed to evaluate the scheduling potential of aggregated EV fleets within a given scheduling horizon. This method effectively reduces the variable dimension while preserving the charging and discharging constraints of individual EVs. Subsequently, a Nash bargaining based cooperative scheduling model involving a distribution system operator (DSO), an EV aggregator (EVA), and a load aggregator (LA) is established to maximize the social welfare and improve the low-carbon performance of the system. This model is solved by the alternating direction method of multipliers (ADMM) algorithm in a distributed manner, with privacy of participants fully preserved. The proposed strategy is proven to achieve the objective of low-carbon economic operation.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
    • Multi-time-scale Resource Allocation Based on Long-term Contracts and Real-time Rental Business Models for Shared Energy Storage Systems

      2024, 12(2):454-465. DOI: 10.35833/MPCE.2023.000744

      Abstract (479) HTML (8) PDF 1.89 M (95) Comment (0) Favorites

      Abstract:The push for renewable energy emphasizes the need for energy storage systems (ESSs) to mitigate the unpredictability and variability of these sources, yet challenges such as high investment costs, sporadic utilization, and demand mismatch hinder their broader adoption. In response, shared energy storage systems (SESSs) offer a more cohesive and efficient use of ESS, providing more accessible and cost-effective energy storage solutions to overcome these obstacles. To enhance the profitability of SESSs, this paper designs a multi-time-scale resource allocation strategy based on long-term contracts and real-time rental business models. We initially construct a life cycle cost model for SESS and introduce a method to estimate the degradation costs of multiple battery groups by cycling numbers and depth of discharge within the SESS. Subsequently, we design various long-term contracts from both capacity and energy perspectives, establishing associated models and real-time rental models. Lastly, multi-time-scale resource allocation based on the decomposition of user demand is proposed. Numerical analysis validates that the business model based on long-term contracts excels over models operating solely in the real-time market in economic viability and user satisfaction, effectively reducing battery degradation, and leveraging the aggregation effect for SESS can generate an additional increase of 10.7% in net revenue.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
    • Virtual Transmission Solution Based on Battery Energy Storage Systems to Boost Transmission Capacity

      2024, 12(2):466-474. DOI: 10.35833/MPCE.2023.000729

      Abstract (397) HTML (17) PDF 4.50 M (108) Comment (0) Favorites

      Abstract:The increasing penetration of variable renewable energy (VRE) generation along with the decommissioning of conventional power plants in Chile, has raised several operational challenges in the Chilean National Power Grid (NPG), including transmission congestion and VRE curtailment. To mitigate these limitations, an innovative virtual transmission solution based on battery energy storage systems (BESSs), known as grid booster (GB), has been proposed to increase the capacity of the main 500 kV corridor of the NPG. This paper analyzes the dynamic performance of the GB using a wide-area electromagnetic transient (EMT) model of the NPG. The GB project, composed of two 500 MVA BESS units at each extreme of the 500 kV corridor, allows increasing the transmission capacity for 15 min during N - 1 contingencies, overcoming transmission limitations under normal operation conditions while maintaining system stability during faults. The dynamic behavior of the GB is also analyzed to control power flow as well as voltage stability. The results show that the GB is an effective solution to allow greater penetration of VRE generation while maintaining system stability in the NPG.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
    • An Analytical Method for Delineating Feasible Region for PV Integration Capacities in Net-zero Distribution Systems Considering Battery Energy Storage System Flexibility

      2024, 12(2):475-487. DOI: 10.35833/MPCE.2023.000633

      Abstract (592) HTML (13) PDF 3.32 M (91) Comment (0) Favorites

      Abstract:To provide guidance for photovoltaic (PV) system integration in net-zero distribution systems (DSs), this paper proposes an analytical method for delineating the feasible region for PV integration capacities (PVICs), where the impact of battery energy storage system (BESS) flexibility is considered. First, we introduce distributionally robust chance constraints on network security and energy/carbon net-zero requirements, which form the upper and lower bounds of the feasible region. Then, the formulation and solution of the feasible region is proposed. The resulting analytical expression is a set of linear inequalities, illustrating that the feasible region is a polyhedron in a high-dimensional space. A procedure is designed to verify and adjust the feasible region, ensuring that it satisfies network loss constraints under alternating current (AC) power flow. Case studies on the 4-bus system, the IEEE 33-bus system, and the IEEE 123-bus system verify the effectiveness of the proposed method. It is demonstrated that the proposed method fully captures the spatio-temporal coupling relationship among PVs, loads, and BESSs, while also quantifying the impact of this relationship on the boundaries of the feasible region.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
    • Optimal Design of Hybrid Microgrid in Isolated Communities of Ecuador

      2024, 12(2):488-499. DOI: 10.35833/MPCE.2023.000733

      Abstract (713) HTML (12) PDF 4.21 M (109) Comment (0) Favorites

      Abstract:In rural territories, the communities use energy sources based on fossil fuels to supply themselves with electricity, which may address two main problems: greenhouse gas emissions and high fuel prices. Hence, there is an opportunity to include renewable resources in the energy mix. This paper develops an optimization model to determine the optimal sizing, the total annual investment cost in renewable generation, and other operating costs of the components of a hybrid microgrid. By running a k-means clustering algorithm on a meteorological dataset of the community under study, the hourly representative values become input parameters in the proposed optimization model. The method for the optimal design of hybrid microgrid is analyzed in six operating scenarios considering 24-hour continuous power supply; load shedding percentage; diesel power generator (genset) curtailment; the worst meteorological conditions; the use of renewable energy sources including battery energy storage systems (BESSs) and the use of genset. A mathematical programming language (AMPL) tool is used to find solutions of the proposed optimization model. Results show that the total costs of microgrid in the scenarios that cover 100% of the load demand (without considering the scenario with 100% renewables) increase by over 16% compared with the scenario with genset operation limitation. For the designs with power supply restrictions, the total cost of microgrid in the scenario with load shedding is reduced by over 27% compared with that without load shedding.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
    • >Original Paper
    • Pathway Planning of Nuclear Power Development Incorporating Assessment of Nuclear Event Risk

      2024, 12(2):500-513. DOI: 10.35833/MPCE.2023.000265

      Abstract (732) HTML (17) PDF 2.90 M (83) Comment (0) Favorites

      Abstract:The nuclear event risk (NER) is an important and disputed factor that should be reasonably considered when planning the pathway of nuclear power development (NPD) to assess the benefits and risks of developing nuclear power more objectively. This paper aims to explore the impact of nuclear events on NPD pathway planning. The influence of nuclear events is quantified as a monetary risk component, and an optimization model that incorporates the NER in the objective function is proposed. To optimize the pathway of NPD in the low-carbon transition course of power supply structure evolution, a simulation model is built to deduce alternative NPD pathways and corresponding power supply evolution scenarios under the constraint of an exogenously assigned carbon emission pathway (CEP); moreover, a method is proposed to describe the CEP by superimposing the maximum carbon emission space and each carbon emission reduction (CER) component, and various CER components are clustered considering the emission reduction characteristics and resource endowments of different power generation technologies. A case study is conducted to explore the impact of NER and its risk valuation uncertainty on NPD pathway planning. The method presented in this paper allows the impact of nuclear events on NPD pathway planning to be quantified and improves the level of coordinated optimization of benefits and risks.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
    • Exact Box-constrained Economic Operating Region for Power Grids Considering Renewable Energy Sources

      2024, 12(2):514-523. DOI: 10.35833/MPCE.2023.000312

      Abstract (658) HTML (19) PDF 1.21 M (92) Comment (0) Favorites

      Abstract:The growing integration of renewable energy generation manifests as an effective strategy for reducing carbon emissions. This paper strives to efficiently approximate the set of optimal scheduling plans (OSPs) to enhance the performance of the steady-state adaptive cruise method (SACM) of power grid, improving the ability of dealing with operational uncertainties. Initially, we provide a mathematical definition of the exact box-constrained economic operating region (EBC-EOR) for the power grid and its dispatchable components. Following this, we introduce an EBC-EOR formulation algorithm and the corresponding bi-level optimization models designed to explore the economic operating boundaries. In addition, we propose an enhanced big- M method to expedite the computation of the EBC-EOR. Finally, the effectiveness of the EBC-EOR formulation, its economic attributes, correlation with the scheduling plan underpinned by model predictive control, and the significant improvement in computational efficiency (over twelvefold) are verified through case studies conducted on two test systems..

      • 0+1
      • 1+1
      • 2+1
    • Design of Power System Stabilizer for DFIG-based Wind Energy Integrated Power Systems Under Combined Influence of PLL and Virtual Inertia Controller

      2024, 12(2):524-534. DOI: 10.35833/MPCE.2023.000202

      Abstract (395) HTML (13) PDF 3.20 M (86) Comment (0) Favorites

      Abstract:Wind energy systems (WESs) based on doubly-fed induction generators (DFIGs) have enormous potential for meeting the future demands related to clean energy. Due to the low inertia and intermittency of power injection, a WES is equipped with a virtual inertial controller (VIC) to support the system during a frequency deviation event. The frequency deviation measured by a phase locked loop (PLL) installed on a point of common coupling (PCC) bus is the input signal to the VIC. However, a VIC with an improper inertial gain could deteriorate the damping of the power system, which may lead to instability. To address this issue, a mathematical formulation for calculating the synchronizing and damping torque coefficients of a WES-integrated single-machine infinite bus (SMIB) system while considering PLL and VIC dynamics is proposed in this paper. In addition, a power system stabilizer (PSS) is designed for wind energy integrated power systems to enhance electromechanical oscillation damping. A small-signal stability assessment is performed using the infinite bus connected to a synchronous generator of higher-order dynamics integrated with a VIC-equipped WES. Finally, the performance and robustness of the proposed PSS is demonstrated through time-domain simulation in SMIB and nine-bus test systems integrated with WES under several case studies.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
    • Stochastic Unit Commitment with High-penetration Offshore Wind Power Generation in Typhoon Scenarios

      2024, 12(2):535-546. DOI: 10.35833/MPCE.2023.000019

      Abstract (691) HTML (8) PDF 3.89 M (84) Comment (0) Favorites

      Abstract:To tackle the energy crisis and climate change, wind farms are being heavily invested in across the world. In China’s coastal areas, there are abundant wind resources and numerous offshore wind farms are being constructed. The secure operation of these wind farms may suffer from typhoons, and researchers have studied power system operation and resilience enhancement in typhoon scenarios. However, the intricate movement of a typhoon makes it challenging to evaluate its spatial-temporal impacts. Most published papers only consider predefined typhoon trajectories neglecting uncertainties. To address this challenge, this study proposes a stochastic unit commitment model that incorporates high-penetration offshore wind power generation in typhoon scenarios. It adopts a data-driven method to describe the uncertainties of typhoon trajectories and considers the realistic anti-typhoon mode in offshore wind farms. A two-stage stochastic unit commitment model is designed to enhance power system resilience in typhoon scenarios. We formulate the model into a mixed-integer linear programming problem and then solve it based on the computationally-efficient progressive hedging algorithm (PHA). Finally, numerical experiments validate the effectiveness of the proposed method.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
    • A Scenario-classification Hybrid-based Banding Method for Power Transfer Limits of Critical Inter-corridors

      2024, 12(2):547-560. DOI: 10.35833/MPCE.2022.000791

      Abstract (721) HTML (8) PDF 7.39 M (95) Comment (0) Favorites

      Abstract:To secure power system operations, practical dispatches in industries place a steady power transfer limit on critical inter-corridors, rather than high-dimensional and strong nonlinear stability constraints. However, computational complexities lead to over-conservative pre-settings of transfer limit, which further induce undesirable and non-technical congestion of power transfer. To conquer this barrier, a scenario-classification hybrid-based banding method is proposed. A cluster technique is adopted to separate similarities from historical and generated operating condition dataset. With a practical rule, transfer limits are approximated for each operating cluster. Then, toward an interpretable online transfer limit decision, cost-sensitive learning is applied to identify cluster affiliation to assign a transfer limit for a given operation. In this stage, critical variables that affect the transfer limit are also picked out via mean impact value. This enables us to construct low-complexity and dispatcher-friendly rules for fast determination of transfer limit. The numerical case studies on the IEEE 39-bus system and a real-world regional power system in China illustrate the effectiveness and conservativeness of the proposed method.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
    • Torque Limit-based Inertial Control Method Based on Delayed Support for Primary Frequency Control of Wind Turbines

      2024, 12(2):561-570. DOI: 10.35833/MPCE.2022.000773

      Abstract (391) HTML (7) PDF 3.53 M (93) Comment (0) Favorites

      Abstract:To avoid the secondary frequency dip caused by the steep drop of the electrical power of wind turbines (WTs) at the end of frequency support stage, the torque limit-based inertial control (TLIC) method sets the power reference as a linear function of rotor speed, rather than the step form for the stepwise inertial control. However, the compensation effect on the frequency nadir (FN) caused by the load surge is weakened as the TLIC power is no longer in the step form. Specifically, the maximum point of the frequency response component (FRC) contributed by TLIC occurs earlier than the minimum point of FRC corresponding to the load surge, so that the FN cannot be adequately raised. Therefore, this paper first investigates the relation between the peak and nadir times of FRCs stimulated by the TLIC and load power. On this basis, with the compensation principle of matching the peak and nadir times of FRCs, the improved TLIC method based on delayed support is proposed. Finally, the effectiveness of the proposed method is validated via the experiments on the test bench of wind-integrated power system.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
    • Power Flow Model for Medium-voltage Distribution Systems Considering Measurement and Structure Characteristics

      2024, 12(2):571-583. DOI: 10.35833/MPCE.2023.000035

      Abstract (636) HTML (18) PDF 3.59 M (90) Comment (0) Favorites

      Abstract:Medium-voltage distribution systems (MVDSs) mainly consist of a feeder head, lines, distribution transformers, and the equivalent load or power supply interfaced with the distribution transformers. The information of such load or power supply can be measured via the three-wattmeter method (THM) and the two-wattmeter method (TWM). The measurements can be used to perform the control of the power supply and simulate the characteristics of the load, so the models of the load and the power supply need to consider the measurement characteristics. Existing research works on three-phase power flow (PF) just consider the measurement characteristics of THM. Hence, the PF equation of the bus measured via TWM is firstly built. Based on conventional measurements, an accurate and general model of the grounded and ungrounded slack bus is proposed. Furthermore, the influence arising from the connection type and angle shift of distribution transformers on the admittance matrix is considered, and thus a general three-phase transformer model is summarized, which is applicable for all the transformers mentioned herein. Finally, Newtons method is adopted to solve the PF calculation, and the performance of the proposed PF model is demonstrated through designed tests.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
    • Improved State-space Modelling for Microgrids Without Virtual Resistances

      2024, 12(2):584-596. DOI: 10.35833/MPCE.2023.000085

      Abstract (510) HTML (11) PDF 3.31 M (102) Comment (0) Favorites

      Abstract:Power converters and their interfacing networks are often treated as modular state-space blocks for small-signal stability studies in microgrids; they are interconnected by matching the input and output states of the network and converters. Virtual resistors have been widely used in existing models to generate a voltage for state-space models of the network that require voltage inputs. This paper accurately quantifies the adverse impacts of adding the virtual resistance and proposes an alternative method for network modelling that eliminates the requirement of the virtual resistor when interfacing converters with microgrids. The proposed nonlinear method allows initialization, time-domain simulations of the nonlinear model, and linearization and eigenvalue generation. A numerically linearized small-signal model is used to generate eigenvalues and is compared with the eigenvalues generated using the existing modelling method with virtual resistances. Deficiencies of the existing method and improvements offered by the proposed modelling method are clearly quantified. Electromagnetic transient (EMT) simulations using detailed switching models are used for validation of the proposed modelling method.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
    • Distributed Secondary Control Based on Dynamic Diffusion Algorithm for Current Sharing and Average Voltage Regulation in DC Microgrids

      2024, 12(2):597-607. DOI: 10.35833/MPCE.2022.000668

      Abstract (595) HTML (10) PDF 6.33 M (96) Comment (0) Favorites

      Abstract:This paper introduces a distributed secondary control scheme for achieving current sharing and average voltage regulation objectives in a DC microgrid. The proposed scheme employs a dynamic diffusion algorithm (DDA) instead of the consensus algorithm to enable distributed communication among converters. To help understand DDA, the relation of DDA and other diffusion algorithms is discussed in detail and its superiority is shown by comparison with diffusion and consensus algorithms. Furthermore, considering the discrete nature and different sampling time of the digital controller and communication network, a z-domain model of the entire DC microgrid is established. The influence of communication and secondary control parameters on the system stability is investigated. Based on the established model, the tolerable communication rates are obtained. Real-time simulations conducted on the OPAL-RT platform validate the effectiveness of the proposed scheme, showcasing its advantages in terms of convergence speed and stability.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
    • An Optimization Model for Reliability Improvement and Cost Reduction Through EV Smart Charging

      2024, 12(2):608-620. DOI: 10.35833/MPCE.2022.000837

      Abstract (551) HTML (12) PDF 4.63 M (90) Comment (0) Favorites

      Abstract:There is a general concern that the increasing penetration of electric vehicles (EVs) will result in higher aging failure probability of equipment and reduced network reliability. The electricity costs may also increase, due to the exacerbation of peak load led by uncontrolled EV charging. This paper proposes a linear optimization model for the assessment of the benefits of EV smart charging on both network reliability improvement and electricity cost reduction. The objective of the proposed model is the cost minimization, including the loss of load, repair costs due to aging failures, and EV charging expenses. The proposed model incorporates a piecewise linear model representation for the failure probability distributions and utilizes a machine learning approach to represent the EV charging load. Considering two different test systems (a 5-bus network and the IEEE 33-bus network), this paper compares aging failure probabilities, service unavailability, expected energy not supplied, and total costs in various scenarios with and without the implementation of EV smart charging.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
    • Decision Aid Model for Private-owned Electric Vehicles Participating in Frequency Regulation Ancillary Service Market

      2024, 12(2):621-629. DOI: 10.35833/MPCE.2022.000597

      Abstract (514) HTML (6) PDF 2.15 M (92) Comment (0) Favorites

      Abstract:To reduce the difficulty and enhance the enthusiasm of private-owned electric vehicles (EVs) to participate in frequency regulation ancillary service market (FRASM), a decision aid model (DAM) is proposed. This paper presents three options for EV participating in FRASM, i.e., the base mode (BM), unidirectional charging mode (UCM), and bidirectional charging/discharging mode (BCDM), based on a reasonable simplification of users’ participating willingness. In BM, individual EVs will not be involved in FRASM, and DAM will assist users to set the optimal charging schemes based on travel plans under the time-of-use (TOU) price. UCM and BCDM are two modes in which EVs can take part in FRASM. DAM can assist EV users to create their quotation plan, which includes hourly upper and lower reserve capabilities and regulation market mileage prices. In UCM and BCDM, the difference is that only the charging rate can be adjusted in the UCM, and the EVs in BCDM can not only charge but also discharge if necessary. DAM can estimate the expected revenue of all three modes, and EV users can make the final decision based on their preferences. Simulation results indicate that all the three modes of DAM can reduce the cost, while BCDM can get the maximum expected revenue.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
    • Detection of Nonlinear Behavior Induced by Hard Limiting in Voltage Source Converters in Wind Farms Based on Higher-order Spectral Analysis

      2024, 12(2):630-645. DOI: 10.35833/MPCE.2022.000784

      Abstract (666) HTML (19) PDF 5.53 M (99) Comment (0) Favorites

      Abstract:In recent years, sub-synchronous oscillation accidents caused by wind power integration have received extensive attention. The recorded constant-amplitude waveforms can be induced by either linear or nonlinear oscillation mechanisms. Hence, the nonlinear behavior needs to be distinguished prior to choosing the analysis method. Since the 1960s, the higher-order statistics (HOS) theory has become a powerful tool for the detection of nonlinear behavior (DNB) in production quality control wherein it has mainly been applied to mechanical condition monitoring and fault diagnosis. This study focuses on the hard limiters of the voltage source converter (VSC) control systems in the wind farms and attempts to detect the nonlinear behavior caused by bi- or uni-lateral saturation hard limiting using the HOS analysis. First, the conventional describing function is extended to obtain the detailed frequency domain information on the bi- and uni-lateral saturation hard limiting. Furthermore, the bi- and tri-spectra are introduced as the HOS, which are extended into bi- and tri-coherence spectra to eliminate the effects of the linear parts on the harmonic characteristics of hard limiting in the VSC control system, respectively. The effectiveness of the HOS in the DNB and the classification of the hard-limiting types is proven, and its detailed derivation and estimation procedure is presented. Finally, the quadratic and cubic phase coupling in the signals is illustrated, and the performance of the proposed method is evaluated and discussed.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
    • High-frequency Resonance Analysis and Impedance Reshaping Control of MMC-HVDC System Based on Frequency Coupling Impedance Model

      2024, 12(2):646-657. DOI: 10.35833/MPCE.2022.000702

      Abstract (529) HTML (13) PDF 5.74 M (90) Comment (0) Favorites

      Abstract:In recent years, high-frequency resonance (HFR) events occurred in several modular multilevel converter based high-voltage direct current (MMC-HVDC) projects. The time delay of an MMC-HVDC system is the critical factor that induces HFR. The frequency coupling affects the impedance characteristics of an MMC and further deteriorates system stability. Therefore, in this paper, a multi-input multi-output admittance model of an MMC-HVDC system is developed to analyze its frequency characteristics. The effects of current loop, power loop, phase-locked loop, and operating point on the MMC frequency coupling degree are analyzed in detail. Meanwhile, to further suppress HFR in the MMC-HVDC system, an enhanced impedance reshaping control strategy based on the equivalent single-input single-output impedance model is proposed. Finally, the accuracy of the enhanced impedance model and the effectiveness of the impedance reshaping control are verified by electromagnetic transient simulations in PSCAD.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
      • 18+1
      • 19+1
      • 20+1
    • Steady-state Voltage Security-constrained Optimal Frequency Control for Weak HVDC Sending-end AC Power Systems

      2024, 12(2):658-669. DOI: 10.35833/MPCE.2023.000357

      Abstract (462) HTML (20) PDF 6.17 M (117) Comment (0) Favorites

      Abstract:Due to the fact that a high share of renewable energy sources (RESs) are connected to high-voltage direct current (HVDC) sending-end AC power systems, the voltage and frequency regulation capabilities of HVDC sending-end AC power systems have diminished. This has resulted in potential system operating problems such as overvoltage and overfrequency, which occur simultaneously when block faults exist in the HVDC link. In this study, a steady-state voltage security-constrained optimal frequency control method for weak HVDC sending-end AC power systems is proposed. The integrated virtual inertia control of RESs is employed for system frequency regulation. Additional dynamic reactive power compensation devices are utilized to control the voltage of all nodes meet voltage security constraints. Then, an optimization model that simultaneously considers the frequency and steady-state voltage security constraints for weak HVDC sending-end AC power systems is established. The optimal control scheme with the minimum total cost of generation tripping and additional dynamic reactive power compensation required is obtained through the optimization solution. Simulations are conducted on a modified IEEE 9-bus test system and practical Qing-Yu line commutated converter based HVDC (LCC-HVDC) sending-end AC power system to verify the effectiveness of the proposed method.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
      • 13+1
      • 14+1
      • 15+1
      • 16+1
      • 17+1
    • >Short Letter
    • Improved Leap-frog Method for Time-domain Fault Location

      2024, 12(2):670-674. DOI: 10.35833/MPCE.2023.000175

      Abstract (485) HTML (9) PDF 1.49 M (83) Comment (0) Favorites

      Abstract:The partial differential equation (PDE) solution of the telegrapher is a promising fault location method among time-domain and model-based techniques. Recent research works have shown that the leap-frog process is superior to other explicit methods for the PDE solution. However, its implementation is challenged by determining the initial conditions in time and the boundary conditions in space. This letter proposes two implicit solution methods for determining the initial conditions and an analytical way to obtain the boundary conditions founded on the signal decomposition. The results show that the proposal gives fault location accuracy superior to the existing leap-frog scheme, particularly in the presence of harmonics.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1