Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

HLoad Frequency Control Design Based on Delay Discretization Approach for Interconnected Power Systems with Time Delay
Author:
Affiliation:

Department of Electrical and Electronics Engineering, National Institute of Technology Nagaland, Dimapur 797103, India

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    This paper proposes a delay discretization based H load frequency control strategy for interconnected power systems. The effect of time delay is considered in the system for the design of stabilizing controller. To improve the tolerable delay margin of the system, a two-term state feedback controller structure is used. The controller requires delayed state information as control input. In the proposed approach, the amount of delay introduced in the state of the system, i.e., artificial delay, for taking control action is assumed to be constant. The approach is based on the discretization of this delay interval. In order to define a simple Lyapunov-Krasovskii (LK) function for each of the discretized interval, a stabilization criterion is developed in such a way that a single one satisfies the requirement of all the intervals. The developed criterion is computationally simple and efficient.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 03,2019
  • Revised:
  • Adopted:
  • Online: November 30,2021
  • Published: